

ACTIVATION PROPERTIES OF NEUTRON SHIELDING MATERIALS

Eszter Dian, , Esben Klinkby, Dávid Hajdú , Katalin Gméling, János Osán, Péter Zagyvai

> HAS Centre for Energy Research, Hungary DTU Nutech, Technical University of Denmark

Introduction

European Spallation Source ESS ERIC, Lund, Sweden

HUNGARIAN ACADEMY OF SC

BRR – Budapest Research Reactor

- VVR-type research reactor
 - light water-cooled and moderated tank type reactor with a beryllium reflector
 - low enriched uranium fuel (LEU: 19.9% ²³⁵U)
- nominal thermal power: 10 MW
- maximal thermal flux: $2.1 \times 10^{14} \text{ n/cm}^2 \text{s}$
- Reactor "campaign": 10 effective days
 + break for weekend

~ 160 operational days/year, flexible timetable

Neutron irradiation of concrete samples – Measurement and simulation

MCNP

CENTRE FOR ENERGY RESE

HUNGARIAN ACADEMY OF SCIENCES

mta

Neutron irradiation of concrete samples – Measurement and simulation

TANGENCIONÁLIS CSATORNA Channel Thermal Fast 2.00E+13 5.00E+13 Thermal flux [1/(cm2*s)] Epithermal flux [1/(cm2*s)] 4.30E+11 3.80E+12 Fast flux [1/(cm2*s)] 1.30E+12 4.70E+13

Measurement

- Irradiation:
 - 2h in 'Thermal channel'
 - 2h in 'Fast channel'
- Gamma spectroscopy:
 - HPGe detector
 - low background measurement chamber
- Cooling time: > 4 days
- Follow-up time: 18 days
- Measurement time: 10 110 mins
- Deadtime: 20 2 %

Eszter Dian, ISTSI 2019, St. Petersburg

INGARIAN ACADEMY

Decay of measured activity concentration – 🗮 2020 'thermal' channel

13

Measurement

Measured and nominal composition of PE-B4C concrete

Yb

Ра

260

	[w%]							
lement	Nominal	PGAA	Unc.	XRF	Unc.	NAA	Unc.	
	2.31	1.26	0.040					
	8.99	5.46	0.648					
la	0.62	1.11	0.047	1.29	0.197	1.21	0.044	
	2.35	3.44	0.127	5.51	0.036			
i	28.60	21.50	0.710	27.04	0.003			
	0.28	0.23	0.013	0.24	0.015			
	1.26	1.39	0.051	1.95	0.001			
а	8.10	6.50	0.252	8.54	0.000			
i	0.05	0.10	0.0002	0.16	0.001			
/In				0.02	0.001			
e	0.84	1.12	0.018	1.47	0.001	1.59	0.073	
	45.80	56.35						

- Comparison of all nominal and measured (XRF, PGAA, NAA) concrete compositions
- 15 'key isotopes' and their mother elements
- MCNP material cards

	[ppr	nw] (un	derstan	ding as s	imple m	nass ratio	os)
Element	Nominal	Pgaa	Unc.	XRF	Unc.	NAA	Unc.
В	6000	2000.0	40.000				
Cl	36	156.0	4.212	130.00	10.000		
V		77.0	4.620	57.62	7.114		
Sm		1.5	0.090			1.57	0.065
Gd		1.6	0.160				
					295.22		
Mg	1960			982.57	5		
Sc				11.76	3.406	3.45	0.126
Cr				82.18	1.348	94.30	3.727
Со						5.78	0.248
Ni				11.68	0.781		
Cu				43.53	0.633		
Zn				100.06	0.864	107.70	6.261
Ga				7.84	0.428		
Ge				4.87	0.283		
As				2.92	0.143		
Rb				59.36	0.388	68.50	4.866
Sr				311.67	1.244		
Y				11.55	0.198		
2r				91.43	0.394		
٧b				5.36	0.135		
Ло				3.03	0.130		
n				1.70	0.194		
Sn				2.81	0.047		
b				1.59	0.229	1.43	0.128
Cs				2.58	0.301	1.98	0.130
Ва				508.51	1.124	514.20	25.450
La				19.97	0.277	12.97	0.514
Ce				41.16	0.535	31.35	1.324
Pr				4.84	0.458		
Nd				19.55	0.220	14.15	1.414
w						75.46	3.084
Pb				18.31	0.869		
Th				3.85	0.301	4.30	0.186
U				2.70	0.367		
Eu						0.59	0.026
Hf						2.70	0.124
Tb						0.30	0.035

1.03

0.095

Measured and nominal composition of PE-B4C concrete

DTU	
=	

					[w%]						[ppr	nw] (un	derstan	ding
	Element	Nominal	PGAA	Unc.	XRF	Unc.	NAA	Unc.		Element	Nominal	pgaa	Unc.	XRF
	Н	2.31	1.26	0.040		•		•		В	6000	2000.0	40.000	
	C	8.99	5.46	0.648						Cl	36	156.0	4.212	13
	Na	0.62	1.11	0.047	1.29	0.197	1.21	0.044		V		77.0	4.620	5
-	AI	2.35	3.44	0.127	5.51	0.036				Sm)	1.5	0.090	
	Si	28.60	21.50	0.710	27.04	0.003				Gđ		1.6	0.160	
	s	0.28	0.23	0.013	0.24	0.015				Ma	1060			00
	К	1.26	1.39	0.051	1.95	0.001			1	Sc	1900			1
	Ca	8.10	6.50	0.252	8.54	0.000			(Cr				8
	Ti	0.05	0.10	0.0002	0.16	0.001				Co				
	Mn				0.02	0.001				NI				1
	Fe	0.84	1.12	0.018	1.47	0.001	1.59	0.073		Cu				4
	0	45.80	56.35	6					6	Zn				10
										Ga				
										Ge				
										٨s				
									(Rb				5

- Comparison of all nominal and measured (XRF, PGAA, NAA) concrete compositions
- 15 'key isotopes' and their mother elements
- MCNP material cards

mt

			[ppr	nw] (un	derstan	ding as s	imple m	ass ratio	os)
Unc		Element	Nominal	pgaa	Unc.	XRF	Unc.	NAA	Unc.
one.		В	6000	2000.0	40.000				
		Cl	36	156.0	4.212	130.00	10.000		
0.04	1	V		77.0	4.620	57.62	7.114		
0.04		Sm		1.5	0.090			1.57	0.065
		Ga		1.6	0.160				
							295.22		
		Mg	1960			982.57	5		
	1	Sc				11.76	3.406	3.45	0.126
		Cr				82.18	1.348	94.30	3.727
		Co						5.78	0.248
		Ni				11.68	0.781		
0.07	3	Cu				43.53	0.633		
	C	Zn				100.06	0.864	107.70	6.261
		Ga				7.84	0.428		
		Ge				4.87	0.283		
		٨ç				2.92	0.143		
	$\boldsymbol{\subset}$	Rb				59.36	0.388	68.50	4.866
		Sr				311.67	1.244		
		Y				11.55	0.198		
		Zr				91.43	0.394		
		Nb				5.36	0.135		
		Мо				3.03	0.130		
		In				1.70	0.194		
or		Sn				2.81	0.047		
CI		Sb				1.59	0.229	1.43	0.128
	C	Cs				2.58	0.301	1.98	0.130
		Da				508.51	1.124	514.20	25.450
	$\boldsymbol{\mathcal{C}}$	La				19.97	0.277	12.97	0.514
		Ce				41.16	0.535	31.35	1.324
		Pr				4.84	0.458		
		Nd				19.55	0.220	14.15	1.414
	C	W						75.46	3.084
						18.31	0.869		
		Th				3.85	0.301	4.30	0.186
		U				2.70	0.367		
	02	Eu						0.59	0.026

Тb

Yb

Ρ

260

0.124

0.095

0.035 tersburg

2.70

1.03

Recommended MCNP material cards

m

REFERENCE CONCRETE [2.33 g/cm ³]						
M31	1001	-7.23E-01				
	13000	-3.70E+00				
	14000	-3.27E+01				
	16000	-2.36E-01				
	19000	-2.12E+00				
	20000	-7.12E+00				
	17000	-3.02E-03				
	12000	-2.37E-01				
	8016	-4.94E+01				
	22000	-1.76E-01				
	11000	-1.99E+00				
	26000	-1.55E+00				
	74000	-5.96E-02				
	57000	-2.14E-03				
	62000	-2.38E-04				
	37000	-8.62E-03				
	90000	-7.62E-04				
	24000	-6.57E-03				
	21000	-3.97E-04				
	30000	-1.07E-02				
	55000	-2.59E-04				
	27000	-5.52E-04				
	63000	-7.00E-05				

- Mixed composition from nominal composition and the results of all three analytical methods (XRF, PGAA, NAA)
- Recommended for MCNP activity simulation

Neutron irradiation of concrete samples – Measurement and simulation

Decay of measured and simulated activity concentration – PE-B4C concrete, 'thermal' channel

MCNP

Total activity concentration in PE-B4C concrete (Thermal channel)

Decay of measured and simulated activity concentration – reference concrete, 'thermal' channel

Decay of measured and simulated activity concentration – Skanska concrete, 'thermal' channel

MCNP

Total activity concentration in Skanska concrete (Thermal channel)

Decay of measured and simulated activity concentration – PE-B4C concrete, 'fast' channel

Decay of measured and simulated activity concentration – Skanska concrete, 'fast' channel

Decay of measured and simulated activity concentration – Skanska concrete, 'fast' channel

Comblayer model – VOR beamline

02/07/2019

Simulation procedure

1) MCNP transport simulation. Source: protons on target

=> energy binned flux + spallation induced isotope production rates.

Results are normalized: per proton

- 2) Characterize irradiation and cooling scenarios
- 3) Cinder Activation calculation + gamma script => Gamma source(s)
- 4) MCNP gamma transport calculation.
- 5) Conversion gamma flux to dose rate

The above steps are carried out for each material:

→Supermix (recommended composition from measurement)

- \rightarrow ESS ref: old, dating to initiation of studies
- \rightarrow ESS ref: used in bunker modeling

Simulation procedure

→To ensure accurate results, self shielding is important to consider.
 →In practice this means that the parts of the concrete facing the inside of the inside of the bunker is much more important for the dose in the bunker, than concrete behind it => cell divide

Eszter Dian, ISTSI 2019, St. Petersburg

Assuming 10 years of ESS average operation (5MW x 0.616), followed by 6 months of 5MW followed by 3 days of cooling.

Results

- In addition to a new gamma source, Cinder lists the activity of all isotopes
- From that list ²⁴Na seems to be the main source of dose.
- T½ = 15h

mta

• Eγ =1.4MeV

INGARIAN ACADEMY

Summary

Activity measurements:

- Neutron activation properties of PE-B4C, 'Reference', and Skanska concrete measured and compared
- 20-80% lower activity-concentration from PE-B4C concrete through 2 weeks cooling time

The methodology is ready to adapt for other shielding materials Measurements & simulations:

- Simulation with nominal composition found to underestimate the activity-production
- Concrete compositions determined with different analytical methods: XRF, PGAA and NAA
- Measurement-based realistic material cards produced for PE-B4C and 'Reference' concrete

Thank you for your attention! Questions?

